Problems

Age
Difficulty
Found: 2580

There is a system of equations \[\begin{aligned} * x + * y + * z &= 0,\\ * x + * y + * z &= 0,\\ * x + * y + * z &= 0. \end{aligned}\] Two people alternately enter a number instead of a star. Prove that the player that goes first can always ensure that the system has a non-zero solution.

There are two sets of numbers made up of 1s and \(-1\)s, and in each there are 2022 numbers. Prove that in some number of steps it is possible to turn the first set into the second one if for each step you are allowed to simultaneously change the sign of any 11 numbers of the starting set. (Two sets are considered the same if they have the same numbers in the same places.)

Two people play a game with the following rules: one of them guesses a set of integers \((x_1, x_2, \dots , x_n)\) which are single-valued digits and can be either positive or negative. The second person is allowed to ask what is the sum \(a_1x_1 + \dots + a_nx_n\), where \((a_1, \dots ,a_n)\) is any set. What is the smallest number of questions for which the guesser recognizes the intended set?

Given \(n\) points that are connected by segments so that each point is connected to some other and there are no two points that would be connected in two different ways. Prove that the total number of segments is \(n - 1\).

A system of points connected by segments is called “connected” if from each point one can go to any other one along these segments. Is it possible to connect five points to a connected system so that when erasing any segment, exactly two connected points systems are formed that are not related to each other? (We assume that in the intersection of the segments, the transition from one of them to another is impossible).

Two players play on a square field of size \(99 \times 99\), which has been split onto cells of size \(1 \times 1\). The first player places a cross on the center of the field; After this, the second player can place a zero on any of the eight cells surrounding the cross of the first player. After that, the first puts a cross onto any cell of the field next to one of those already occupied, etc. The first player wins if he can put a cross on any corner cell. Prove that with any strategy of the second player the first can always win.

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum?

The number \(n\) has the property that when it is divided by \(q^2\) the remainder is smaller than \(q^2 / 2\), whatever the value of \(q\). List all numbers that have this property.

Airlines connect pairs of cities. How can you connect 50 cities with the fewest number of airlines so that from every city you can get to any other city by taking at most two flights?