The digits of a 3 digit number \(A\) were written in reverse order and this is the number \(B\). Is it possible to find a value of \(A\) such that the sum of \(A\) and \(B\) has only odd numbers as its digits?
Let \(x\) be a 2 digit number. Let \(A\), \(B\) be the first (tens) and second (units) digits of \(x\), respectively. Suppose \(A\) is twice as large as \(B\). If we add the square of \(A\) to \(x\) then we get the square of a certain whole number. Find the value of \(x\).
In a triangle, the lengths of two of the sides are 3.14 and 0.67. Find the length of the third side if it is known that it is an integer.
Prove that, with central symmetry, a circle transforms into a circle.
The opposite sides of a convex hexagon are pairwise equal and parallel. Prove that it has a centre of symmetry.
The symmetry axis of the polygon intersects its sides at points \(A\) and \(B\). Prove that the point \(A\) is either the vertex of the polygon or the middle of the side perpendicular to the axis of symmetry.
Prove that a circle transforms into a circle when it is rotated.
A ream of squared paper is shaded in two colours. Prove that there are two horizontal and two vertical lines, the points of intersection of which are shaded in the same colour.
There are 5 points inside an equilateral triangle with side of length 1. Prove that the distance between some two of them is less than 0.5.
A \(3\times 4\) rectangle contains 6 points. Prove that amongst them there will be two points, such that the distance between them is no greater than \(\sqrt5\).