There are 4 weights and scales. How many loads that are different by weight can be accurately weighed using these weights, if
a) weights can be placed only on one side of the scales;
b) weights can be placed on both sides of the scales?
Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?
Prove the following formulae are true: \[\begin{aligned} a^{n + 1} - b^{n + 1} &= (a - b) (a^n + a^{n-1}b + \dots + b^n);\\ a^{2n + 1} + b^{2n + 1} &= (a + b) (a^{2n} - a^{2n-1}b + a^{2n-2}b^2 - \dots + b^{2n}). \end{aligned}\]
Prove that \(\sqrt{\frac{a^2 + b^2}{2}} \geq \frac{a+b}{2}\).
Find the coefficient of \(x\) for the polynomial \((x - a) (x - b) (x - c) \dots (x - z)\).
The following words/sounds are given: look, yar, yell, lean, lease. Determine what will happen if the sounds that make up these words are pronounced in reverse order.
Find the largest number of colours in which you can paint the edges of a cube (each edge with one colour) so that for each pair of colours there are two adjacent edges coloured in these colours. Edges are considered to be adjacent if they have a common vertex.
The height of the room is 3 meters. When it was being renovated, it turned out that more paint was needed on each wall than on the floor. Can the area of the floor of this room be more than 10 square meters?
In the entry \({*} + {*} + {*} + {*} + {*} + {*} + {*} + {*} = {*}{*}\) replace the asterisks with different digits so that the equality is correct.
16 teams took part in a handball tournament where a victory was worth 2 points, a draw – 1 point and a defeat – 0 points. All teams scored a different number of points, and the team that ranked seventh, scored 21 points. Prove that the winning team drew at least once.