Out of a whole 100-vertex graph, 98 edges were removed. Prove that the remaining ones were connected.
In a graph there are 100 vertices, and the degree of each of them is not less than 50. Prove that the graph is connected.
The faces of a polyhedron are coloured in two colours so that the neighbouring faces are of different colours. It is known that all of the faces except for one have a number of edges that is a multiple of 3. Prove that this one face has a multiple of 3 edges.
In a country, each two cities are connected with a one-way road.
Prove that there is a city from which you can drive to any other whilst travelling along no more than two roads.
Prove that in a bipartite planar graph \(E \geq 2F\), if \(E \geq 2\) (\(E\) is the number of edges, \(F\) is the number of regions).
Solve the equation in integers \(2x + 5y = xy - 1\).
Prove there are no integer solutions for the equation \(x^2 + 1990 = y^2\).
Prove there are no integer solutions for the equation \(4^k - 4^l = 10^n\).
12 teams played a volleyball tournament in one round. Two teams scored exactly 7 wins.
Prove that there are teams \(A\), \(B\), \(C\) where \(A\) won against \(B\), \(B\) won against \(C\), and \(C\) won against \(A\).
It is known that a certain polynomial at rational points takes rational values. Prove that all its coefficients are rational.