On a
Prove that an equal number of rooks is placed in the upper right and lower left cells of
On a board of size
On a plane there are 100 sheep-points and one wolf-point. In one move, the wolf moves by no more than 1, after which one of the sheep moves by a distance of no more than 1, after that the wolf again moves, etc. At any initial location of the points, will a wolf be able to catch one of the sheep?
Every evening Ross arrives at a random time to the bus stop. Two bus routes stop at this bus stop. One of the routes takes Ross home, and the other takes him to visit his friend Rachel. Ross is waiting for the first bus and depending on which bus arrives, he goes either home or to his friend’s house. After a while, Ross noticed that he is twice as likely to visit Rachel than to be at home. Based on this, Ross concludes that one of the buses runs twice as often as the other. Is he right? Can buses run at the same frequency when the condition of the task is met? (It is assumed that buses do not run randomly, but on a certain schedule).
Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.
The planet has
A gang contains 50 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters has taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 8 different raids.
A
Two points are placed inside a convex pentagon. Prove that it is always possible to choose a quadrilateral that shares four of the five vertices on the pentagon, such that both of the points lie inside or on the boundary the quadrilateral.
A pentagon is inscribed in a circle of radius 1. Prove that the sum of the lengths of its sides and diagonals is less than 17.