Prove that there is at most one point of an integer lattice on a circle with centre at \((\sqrt 2, \sqrt 3)\).
Is it possible to draw from some point on a plane \(n\) tangents to a polynomial of \(n\)-th power?
Prove that if \((p, q) = 1\) and \(p/q\) is a rational root of the polynomial \(P (x) = a_nx^n + \dots + a_1x + a_0\) with integer coefficients, then
a) \(a_0\) is divisible by \(p\);
b) \(a_n\) is divisible by \(q\).
For which \(A\) and \(B\) does the polynomial \(Ax^{n + 1} + Bx^n + 1\) have the number \(x = 1\) at least two times as its root?
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(a, b\) be positive integers and \((a, b) = 1\). Prove that the quantity cannot be a real number except in the following cases \((a, b) = (1, 1)\), \((1,3)\), \((3,1)\).
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).
For what values of \(n\) does the polynomial \((x+1)^n - x^n - 1\) divide by:
a) \(x^2 + x + 1\); b) \((x^2 + x + 1)^2\); c) \((x^2 + x + 1)^3\)?
a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.
b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).
Find the largest and smallest values of the functions
a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).