Problems

Age
Difficulty
Found: 2245

Prove that the following polynomial does not have any identical roots: \(P(x) = 1 + x + x^2/2! + \dots + x^n/n!\)

Prove that the polynomial \(x^{2n} - nx^{n + 1} + nx^{n - 1} - 1\) for \(n > 1\) has a triple root of \(x = 1\).

Let \(a, b\) be positive integers and \((a, b) = 1\). Prove that the quantity cannot be a real number except in the following cases \((a, b) = (1, 1)\), \((1,3)\), \((3,1)\).

Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).

For what values of \(n\) does the polynomial \((x+1)^n - x^n - 1\) divide by:

a) \(x^2 + x + 1\); b) \((x^2 + x + 1)^2\); c) \((x^2 + x + 1)^3\)?

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Find the largest and smallest values of the functions

a) \(f_1 (x) = a \cos x + b \sin x\); b) \(f_2 (x) = a \cos^2x + b \cos x \sin x + c \sin^2x\).