Problems

Age
Difficulty
Found: 1991

The tracks in a zoo form an equilateral triangle, in which the middle lines are drawn. A monkey ran away from its cage. Two guards try to catch the monkey. Will they be able to catch the monkey if all three of them can run only along the tracks, and the speed of the monkey and the speed of the guards are equal and they can always see each other?

The judges of an Olympiad decided to denote each participant with a natural number in such a way that it would be possible to unambiguously reconstruct the number of points received by each participant in each task, and that from each two participants the one with the greater number would be the participant which received a higher score. Help the judges solve this problem!

In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?

Aladdin visited all of the points on the equator, moving to the east, then to the west, and sometimes instantly moving to the diametrically opposite point on Earth. Prove that there was a period of time during which the difference in distances traversed by Aladdin to the east and to the west was not less than half the length of the equator.

The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \sin x + a & = bx \\ \cos x &= b \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.

The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \cos x &= ax + b \\ \sin x + a &= 0 \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.

There are three piles of rocks: in the first pile there are 10 rocks, 15 in the second pile and 20 in the third pile. In this game (with two players), in one turn a player is allowed to divide one of the piles into two smaller piles. The loser is the one who cannot make a move. Which player would be the winner?

In the first pile there are 100 sweets and in the second there are 200. Consider the game with two players where: in one turn a player can take any amount of sweets from one of the piles. The winner is the one who takes the last sweet. Which player would win by using the correct strategy?