Problems

Age
Difficulty
Found: 1991

Harry, Jack and Fred were seated so that Harry could see Jack and Fred, Jack could only see Fred, and Fred could not see anyone. Then, from a bag which contained two white caps and three black caps (the contents of the bag were known to the boys), they took out and each put on a cap of an unknown color, and the other two hats remained in the sack. Harry said that he could not determine the color of his hat. Jack heard Harry’s statement and said that he did not have enough information to determine the color of his hat. Could Fred on the basis of these answers determine the color of his cap?

Three friends – Peter, Ryan and Sarah – are university students, each studying a different subject from one of the following: mathematics, physics or chemistry. If Peter is the mathematician then Sarah isn’t the physicist. If Ryan isn’t the physicist then Peter is the mathematician. If Sarah isn’t the mathematician then Ryan is the chemist. Can you determine which subject each of the friends is studying?

At the cat show, 10 male cats and 19 female cats sit in a row where next to each female cat sits a fatter male cat. Prove that next to each male cat is a female cat, which is thinner than it.

The vendor has a cup weighing scales with unequal shoulders and weights. First he weighs the goods on one cup, then on the other, and takes the average weight. Does he deceive customers?

We meet three people: Alex, Brian and Ben. One of them is an architect, the other is a baker and the third is an bus driver. One lives in Aberdeen, the other in Birmingham and the third in Brighton.

1) Ben is in Birmingham only for trips, and even then very rarely. However, all his relatives live in this city.

2) For two of these people the first letter of their name, the city they live in and their job is the same.

3) The wife of the architect is Ben’s younger sister.

This problem is from Ancient Rome.

A rich senator died, leaving his wife pregnant. After the senator’s death it was found out that he left a property of 210 talents (an Ancient Roman currency) in his will as follows: “In the case of the birth of a son, give the boy two thirds of my property (i.e. 140 talents) and the other third (i.e. 70 talents) to the mother. In the case of the birth of a daughter, give the girl one third of my property (i.e. 70 talents) and the other two thirds (i.e. 140 talents) to the mother.”

The senator’s widow gave birth to twins: one boy and one girl. This possibility was not foreseen by the late senator. How can the property be divided between three inheritors so that it is as close as possible to the instructions of the will?

In some country there are 101 cities, and some of them are connected by roads. However, every two cities are connected by exactly one path.

How many roads are there in this country?

Two players in turn increase a natural number in such a way that at each increase the difference between the new and old values of the number is greater than zero, but less than the old value. The initial value of the number is 2. The winner is the one who can create the number 1987. Who wins with the correct strategy: the first player or his partner?

a) The vertices (corners) in a regular polygon with 10 sides are colored black and white in an alternating fashion (i.e. one vertex is black, the next is white, etc). Two people play the following game. Each player in turn draws a line connecting two vertices of the same color. These lines must not have common vertices (i.e. must not begin or end on the same dot as another line) with the lines already drawn. The winner of the game is the player who made the final move. Which player, the first or the second, would win if the right strategy is used?

b) The same problem, but for a regular polygon with 12 sides.