The student did not notice the multiplication sign between two three-digit numbers and wrote one six-digit number, which turned out to be seven times bigger than their product. Determine these numbers.
The student did not notice the multiplication sign between two seven-digit numbers and wrote one fourteen-digit number, which turned out to be three times bigger than their product. Determine these numbers.
A cherry which is a ball of radius r is dropped into a round glass whose axial section is the graph of the function \(y = x^4\). At what maximum r will the ball touch the most bottom point of the bottom of the glass? (In other words, what is the maximum radius r of a circle lying in the region \(y \geq x^4\) and containing the origin?).
Cut the interval \([-1, 1]\) into black and white segments so that the integrals of any a) linear function; b) a square trinomial in white and black segments are equal.
Consider the powers of the number five: 1, 5, 25, 125, 625, ... We form the sequence of their first digits: 1, 5, 2, 1, 6, ...
Prove that any part of this sequence, written in reverse order, will occur in the sequence of the first digits of the powers of the number two (1, 2, 4, 8, 1, 3, 6, 1, ...).
Three functions are written on the board: \(f_1 (x) = x + 1/x\), \(f_2 (x) = x^2, f_3 (x) = (x - 1)^2\). You can add, subtract and multiply these functions (and you can square, cube, etc. them). You can also multiply them by an arbitrary number, add an arbitrary number to them, and also do these operations with the resulting expressions. Therefore, try to get the function \(1/x\).
Prove that if you erase any of the functions \(f_1, f_2, f_3\) from the board, it is impossible to get \(1/x\).
Is it possible to find natural numbers \(x\), \(y\) and \(z\) which satisfy the equation \(28x+30y+31z=365\)?
A continuous function \(f\) has the following properties:
1. \(f\) is defined on the entire number line;
2. \(f\) at each point has a derivative (and thus the graph of f at each point has a unique tangent);
3. the graph of the function \(f\) does not contain points for which one of the coordinates is rational and the other is irrational.
Does it follow that the graph of \(f\) is a straight line?
Peter has 28 classmates. Each 2 out of these 28 have a different number of friends in the class. How many friends does Peter have?
To each pair of numbers \(x\) and \(y\) some number \(x * y\) is placed in correspondence. Find \(1993 * 1935\) if it is known that for any three numbers \(x, y, z\), the following identities hold: \(x * x = 0\) and \(x * (y * z) = (x * y) + z\).