Problems

Age
Difficulty
Found: 2239

We meet three people: Alex, Brian and Ben. One of them is an architect, the other is a baker and the third is an bus driver. One lives in Aberdeen, the other in Birmingham and the third in Brighton.

1) Ben is in Birmingham only for trips, and even then very rarely. However, all his relatives live in this city.

2) For two of these people the first letter of their name, the city they live in and their job is the same.

3) The wife of the architect is Ben’s younger sister.

This problem is from Ancient Rome.

A rich senator died, leaving his wife pregnant. After the senator’s death it was found out that he left a property of 210 talents (an Ancient Roman currency) in his will as follows: “In the case of the birth of a son, give the boy two thirds of my property (i.e. 140 talents) and the other third (i.e. 70 talents) to the mother. In the case of the birth of a daughter, give the girl one third of my property (i.e. 70 talents) and the other two thirds (i.e. 140 talents) to the mother.”

The senator’s widow gave birth to twins: one boy and one girl. This possibility was not foreseen by the late senator. How can the property be divided between three inheritors so that it is as close as possible to the instructions of the will?

In some country there are 101 cities, and some of them are connected by roads. However, every two cities are connected by exactly one path.

How many roads are there in this country?

\(a_1, a_2, a_3, \dots\) is an increasing sequence of natural numbers. It is known that \(a_{a_k} = 3k\) for any \(k\). Find a) \(a_{100}\); b) \(a_{2022}\).

\(f(x)\) is an increasing function defined on the interval \([0, 1]\). It is known that the range of its values belongs to the interval \([0, 1]\). Prove that, for any natural \(N\), the graph of the function can be covered by \(N\) rectangles whose sides are parallel to the coordinate axes so that the area of each is \(1/N^2\). (In a rectangle we include its interior points and the points of its boundary).

a) Give an example of a positive number \(a\) such that \(\{a\} + \{1 / a\} = 1\).

b) Can such an \(a\) be a rational number?

For which natural \(n\) does the number \(\frac{n^2}{1.001^n}\) reach its maximum value?

The function \(F\) is given on the whole real axis, and for each \(x\) the equality holds: \(F (x + 1) F (x) + F (x + 1) + 1 = 0\).

Prove that the function \(F\) can not be continuous.

Two players in turn increase a natural number in such a way that at each increase the difference between the new and old values of the number is greater than zero, but less than the old value. The initial value of the number is 2. The winner is the one who can create the number 1987. Who wins with the correct strategy: the first player or his partner?