Prove that if the expression
takes a rational value, then the expression
also takes on a rational value.
Mark has 1000 identical cubes, each of which has one pair of opposite faces which are coloured white, another pair which are blue and a third pair that are red. He made a large \(10 \times 10 \times 10\) cube from them, joining cubes to one another which have the same coloured faces. Prove that the large cube has a face which is solidly one colour.
The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.
The teacher wrote on the board in alphabetical order all possible \(2^n\) words consisting of \(n\) letters A or B. Then he replaced each word with a product of \(n\) factors, correcting each letter A by \(x\), and each letter B by \((1 - x)\), and added several of the first of these polynomials in \(x\). Prove that the resulting polynomial is either a constant or increasing function in \(x\) on the interval \([0, 1]\).
We are given a polynomial \(P(x)\) and numbers \(a_1\), \(a_2\), \(a_3\), \(b_1\), \(b_2\), \(b_3\) such that \(a_1a_2a_3 \ne 0\). It turned out that \(P (a_1x + b_1) + P (a_2x + b_2) = P (a_3x + b_3)\) for any real \(x\). Prove that \(P (x)\) has at least one real root.
There is a group of 5 people: Alex, Beatrice, Victor, Gregory and Deborah. Each of them has one of the following codenames: V, W, X, Y, Z. We know that:
Alex is 1 year older than V,
Beatrice is 2 years older than W,
Victor is 3 years older than X,
Gregory is 4 years older than Y.
Who is older and by how much: Deborah or Z?
Prove that there are no natural numbers \(a\) and \(b\) such that \(a^2 - 3b^2 = 8\).
Prove that a graph with \(n\) vertices, the degree of each of which is at least \(\frac{n-1}{2}\), is connected.
In the Far East, the only type of transport is a carpet-plane. From the capital there are 21 carpet-planes, from the city of Dalny there is one carpet-plane, and from all of the other cities there are 20. Prove that you can fly from the capital to Dalny (possibly with interchanges).
In a country coming out of each city there are 100 roads and from each city it is possible to reach any other. One road was closed for repairs. Prove that even now you can get from every city to any other.