Problems

Age
Difficulty
Found: 2798

In a room there are some chairs with 4 legs and some stools with 3 legs. When each chair and stool has one person sitting on it, then in the room there are a total of 39 legs. How many chairs and stools are there in the room?

You are given 10 different positive numbers. In which order should they be named \(a_1, a_2, \dots , a_{10}\) such that the sum \(a_1 +2a_2 +3a_3 +\dots +10a_{10}\) is at its maximum?

Prove that, if \(b=a-1\), then \[(a+b)(a^2 +b^2)(a^4 +b^4)\dotsb(a^{32} +b^{32})=a^{64} -b^{64}.\]

In a parallelogram \(ABCD\), point \(E\) belongs to the side \(CD\) and point \(F\) belongs to the side \(BC\). Show that the total red area is the same as the total blue area:

A circle was inscribed in a square, and another square was inscribed in the circle. Which area is larger, the blue or the orange one?

In a square, the midpoints of its sides were marked and some segments were drawn. There is another square formed in the centre. Find its area, if the side of the square has length \(10\).

In a parallelogram \(ABCD\), point \(E\) belongs to the side \(AB\), point \(F\) belongs to the side \(CD\) and point \(G\) belongs to the side \(AD\). What is more, the marked red segments \(AE\) and \(CF\) have equal lengths. Prove that the total grey area is equal to the total black area.

Construct a triangle with the side \(c\), median to side \(a\), \(m_a\), and median to side \(b\), \(m_b\).