Problems

Age
Difficulty
Found: 2224

The positive irrational numbers \(a\) and \(b\) are such that \(1/a + 1/b = 1\). Prove that among the numbers \(\lfloor ma\rfloor , \lfloor nb\rfloor\) each natural number occurs exactly once.

There are 8 glasses of water on the table. You are allowed to take any two of the glasses and make them have equal volumes of water (by pouring some water from one glass into the other). Prove that, by using such operations, you can eventually get all the glasses to contain equal volumes of water.

A broken calculator carries out only one operation “asterisk”: \(a*b = 1 - a/b\). Prove that using this calculator it is possible to carry out all four arithmetic operations (addition, subtraction, multiplication, division).

A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).

Suppose that \(n \geq 3\). Are there n points that do not lie on one line, whose pairwise distances are irrational, and the areas of all of the triangles with vertices in them are rational?

Do there exist three points \(A\), \(B\) and \(C\) on the plane such that for any point \(X\) the length of at least one of the segments \(XA\), \(XB\) and \(XC\) is irrational?

How many rational terms are contained in the expansion of

a) \((\sqrt 2 + \sqrt[4]{3})^{100}\);

b) \((\sqrt 2 + \sqrt[3]{3})^{300}\)?