Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]
Three non-coplanar vectors are given. Is it possible to find a fourth vector perpendicular to the three vectors given?
Find the volume of an inclined triangular prism whose base is an equilateral triangle with sides equal to a if the side edge of the prism is equal to the side of the base and is inclined to the plane of the base at an angle of \(60^{\circ}\).
If you have a piece of paper and some scissors, is it possible to cut a hole out of the paper that’s big enough for you to crawl through?
a) Prove that within any 6 whole numbers there will be two that have a difference between them that is a multiple of 5.
b) Will this statement remain true if instead of the difference we considered the total?
Is the number \(10^{2002} + 8\) divisible by 9?
Is the sum of the numbers \(1 + 2 + 3 + \dots + 1999\) divisible by 1999?
In an ordinary set of dominoes, there are 28 tiles. How many tiles would a set of dominoes contain if the values indicated on the tiles did not range from 0 to 6, but from 0 to 12?
A class contains 38 pupils. Prove that within the class there will be at least 4 pupils born in the same month.
In the town of Ely, all the families have separate houses. On one fine day, each family moved into another, one of the houses house that used to be occupied by other families. They afterwards decided to paint all houses in red, blue or green colors in such a way that for each family the colour of the new and old houses would not match. Is this always possible to paint te houses in such a way, regardless of how families decided to move?