The cells of a \(15 \times 15\) square table are painted red, blue and green. Prove that there are two lines which at least have the same number of cells of one colour.
What is the maximum number of kings, that cannot capture each other, which can be placed on a chessboard of size \(8 \times 8\) cells?
One term a school ran 20 sessions of an after-school Astronomy Club. Exactly five pupils attended each session and no two students encountered one another over all of the sessions more than once. Prove that no fewer than 20 pupils attended the Astronomy Club at some point during the term.
In Mexico, environmentalists have succeeded in enacting a law whereby every car should not be driven at least one day a week (the owner informs the police about their car registration number and the day of the week when this car will not be driven). In a certain family, all adults want to travel daily (each for their own business!). How many cars (at least) should the family have, if the family has a) 5 adults? b) 8 adults?
We call a natural number “amazing” if it has the form \(a^b + b^a\) (where \(a\) and \(b\) are natural numbers). For example, the number 57 is amazing, since \(57 = 2^5 + 5^2\). Is the number 2006 amazing?
Solve the equation: \[x + \frac{x}{x} + \frac{x}{x+\frac{x}{x}} = 1\]
In a mathematical olympiad, \(m>1\) candidates solved \(n>1\) problems. Each candidate solved a different number of problems to all the others. Each problem was solved by a different number of candidates to all the others. Prove that one of the candidates solved exactly one problem.
A teacher filled the squares of a chequered table with \(5\times5\) different integers and gave one copy of it to Janine and one to Zahara. Janine selects the largest number in the table, then she deletes the row and column containing this number, and then she selects the largest number of the remaining integers, then she deletes the row and column containing this number, etc. Zahara performs similar operations, each time choosing the smallest numbers. Can the teacher fill up the table in such a way that the sum of the five numbers chosen by Zahara is greater than the sum of the five numbers chosen by Janine?
The surface of a \(3\times 3\times 3\) Rubik’s Cube contains 54 squares. What is the maximum number of squares we can mark, so that no marked squares share a vertex or are directly adjacent to another marked square?
Each of the 1994 deputies in parliament slapped exactly one of his colleagues. Prove that it is possible to draw up a parliamentary commission of 665 people whose members did not clarify the relationship between themselves in the manner indicated above.