Eight schoolchildren solved \(8\) tasks. It turned out that \(5\) schoolchildren solved each problem. Prove that there are two schoolchildren, who solved every problem at least once.
If each problem is solved by \(4\) pupils, prove that it is not necessary to have two schoolchildren who would solve each problem.
The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?
Some squares on a chess board contain a chess piece. It is known that each row contains at least one chess piece, but that different rows all have different numbers of pieces. Prove that it is always possible to mark 8 pieces so that each row and each column of the board contains exactly one marked piece.
Prove that any convex polygon contains not more than \(35\) vertices with an angle of less than \(170^\circ\).
On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).
Prove that, in a circle of radius 10, you cannot place 400 points so that the distance between each two points is greater than 1.
A circle is covered with several arcs. These arcs can overlap one another, but none of them cover the entire circumference. Prove that it is always possible to select several of these arcs so that together they cover the entire circumference and add up to no more than \(720^{\circ}\).
The function \(f\) is such that for any positive \(x\) and \(y\) the equality \(f (xy) = f (x) + f (y)\) holds. Find \(f (2007)\) if \(f (1/2007) = 1\).
We are given a \(100\times 100\) square grid and \(N\) counters. All of the possible arrangements of the counters on the grid which follow the following rule are considered: no two counters lie in adjacent squares.
What is the largest value of \(N\) for which, in every single possible arrangement of counters following this rule, it is possible to find at least one counter such that moving it to an adjacent square does not break the rule. Squares are considered adjacent if they share a side.
Sarah believes that two watermelons are heavier than three melons, Anna believes that three watermelons are heavier than four melons. It is known that one of the girls is right, and the other is mistaken. Is it true that 12 watermelons are heavier than 18 melons? (It is believed that all watermelons weigh the same and all melons weigh the same.)