Problems

Age
Difficulty
Found: 1740

10 guests came to a party and each left a pair of shoes in the corridor (all guests have the same shoes). All pairs of shoes are of different sizes. The guests began to disperse one by one, putting on any pair of shoes that they could fit into (that is, each guest could wear a pair of shoes no smaller than his own). At some point, it was discovered that none of the remaining guests could find a pair of shoes so that they could leave. What was the maximum number of remaining guests?

There are three sets of dominoes of different colours. How can you put the dominoes from all three sets into a chain (according to the rules of the game) so that every two neighbouring dominoes are of a different colour?

On every cell of a \(9 \times 9\) board there is a beetle. At the sound of a whistle, every beetle crawls onto one of the diagonally neighbouring cells. Note that, in some cells, there may be more than one beetle, and some cells will be unoccupied.

Prove that there will be at least 9 unoccupied cells.

Two boys play the following game: they take turns placing rooks on a chessboard. The one who wins is the one whose last move leaves all the board cells filled. Who wins if both try to play with the best possible strategy?

On the planet Tau Ceti, the landmass takes up more than half the surface area. Prove that the Tau Cetians can drill a hole through the centre of their planet that connects land to land.

When boarding a plane, a line of \(n\) passengers was formed, each of whom has a ticket for one of the \(n\) places. The first in the line is a crazy old man. He runs onto the plane and sits down in a random place (perhaps, his own). Then passengers take turns to take their seats, and in the case that their place is already occupied, they sit randomly on one of the vacant seats. What is the probability that the last passenger will take his assigned seat?