Problems

Age
Difficulty
Found: 2269

The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.

11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).

30 people vote on five proposals. In how many ways can the votes be distributed if everyone votes only for one proposal and only the number of votes cast for each proposal is taken into account?

Each of the 102 pupils of one school is friends with at least 68 others. Prove that among them there are four who have the same number of friends.

In some state, there are 101 cities.

a) Each city is connected to each of the other cities by one-way roads, and 50 roads lead into each city and 50 roads lead out of each city. Prove that you can get from each city to any other, having travelled on no more than on two roads.

b) Some cities are connected by one-way roads, and 40 roads lead into each city and 40 roads lead out of each. Prove that you can get form each city to any other, having travelled on no more than on three roads.

Some person \(A\) thought of a number from 1 to 15. Some person \(B\) asks some questions to which you can answer ‘yes’ or ‘no’. Can \(B\) guess the number by asking a) 4 questions; b) 3 questions.