There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?
2011 numbers are written on a blackboard. It turns out that the sum of any of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this set of 2011 numbers?
Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?
The sequence of numbers \(a_1, a_2, \dots\) is given by the conditions \(a_1 = 1\), \(a_2 = 143\) and
for all \(n \geq 2\).
Prove that all members of the sequence are integers.
Solve the inequality: \(\lfloor x\rfloor \times \{x\} < x - 1\).
We are given \(n+1\) different natural numbers, which are less than \(2n\) (\(n>1\)). Prove that among them there will always be three numbers, where the sum of two of them is equal to the third.
Let \(x_1, x_2, \dots , x_n\) be some numbers belonging to the interval \([0, 1]\). Prove that on this segment there is a number \(x\) such that \[\frac{1}{n} (|x - x_1| + |x - x_2| + \dots + |x - x_n|) = 1/2.\]
51 points were thrown into a square of side 1 m. Prove that it is possible to cover some set of 3 points with a square of side 20 cm.
Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that there is a power of 3 that ends in 001.