Problems

Age
Difficulty
Found: 1816

Solve the equations in integers:

a) \(3x^2 + 5y^2 = 345\);

b) \(1 + x + x^2 + x^3 = 2^y\).

In honor of the March 8 holiday, a competition of performances was organized. Two performances reached the final. \(N\) students of the 5th grade played in the first one and \(n\) students of the 4th grade played in the second one. The performance was attended by \(2n\) mothers of all \(2n\) students. The best performance is chosen by a vote of the mothers. It is known that half of the mothers vote honestly, i.e. for the performance that was truly better and the mothers of the other half in any case vote for the performance in which their child participates.

a) Find the probability of the best performance winning by a majority of votes.

b) The same question but this time more than two performances made it to the final.

A wide variety of questions in mathematics starts with the question ’Is it possible...?’. In such problems you would either present an example, in case the described situation is possible, or rigorously prove that the situation is impossible, with the help of counterexample or by any other means. Sometimes the border between what seems should be possible and impossible is not immediately obvious, therefore you have to be cautious and verify that your example (or counterexample) satisfies the conditions stated in the problem. When you are asked the question whether something is possible or not and you suspect it is actually possible, it is always useful to ask more questions to gather additional information to narrow the possible answers. You can ask for example "How is it possible"? Or "\(\bf Which\) properties should the correct construction satisfy"?

Welcome back! We hope you all had a great summer and now you are ready for the new school year full of fun problems in mathematics. We decided to start with warm-up topic called dissections, so today we will cut various shapes into more elaborate geometric figures in order to reassemble them into a different shape.

The meeting of the secret agents took place in the green house.
image

Considering the numbers in the windows of the green house, what should be drawn in the empty frame?
image

Today we will practice to encrypt and decipher information using some of the most common codes. Majority of the codes in use can be alphabetic and numeric, namely one may want to encode a word, a phrase, or a number, or just any string of symbols using either letters, or numbers, or both. Some of the codes, however may use various other symbols to encrypt the information. To solve some of the problems you will need the correspondence between alphabet letters and numbers

Find one way to encrypt letters of Latin alphabet as sequences of \(0\)s and \(1\)s, each letter corresponds to a sequence of five symbols.

Pinoccio keeps his Golden Key in the safe that is locked with a numerical password. For secure storage of the Key he replaced some digits in the password by letters (in such a way that different letters substitute different digits). After replacement Pinoccio got the password \(QUANTISED17\). Honest John found out that:
• the number \(QUANTISED\) is divisible by all integers less than 17, and
• the difference \(QUA-NTI\) is divisible by \(7\).
Could he find the password?

Using the representation of Latin alphabet as sequences of \(0\)s and \(1\)s five symbols long, encrypt your first and last name.