Problems

Age
Difficulty
Found: 1816

Find all the prime numbers \(p\) such that the number \(2p^2+1\) is also prime.

It is known that \(a + b + c = 5\) and \(ab + bc + ac = 5\). What are the possible values of \(a^2 + b^2 + c^2\)?

Let \(r\) be a rational number and \(x\) be an irrational number (i.e. not a rational one). Prove that the number \(r+x\) is irrational.
If \(r\) and \(s\) are both irrational, then must \(r+s\) be irrational as well?

Definition: We call a number \(x\) rational if there exist two integers \(p\) and \(q\) such that \(x=\frac{p}{q}\). We assume that \(p\) and \(q\) are coprime.
Prove that \(\sqrt{2}\) is not rational.

Let \(n\) be an integer such that \(n^2\) is divisible by \(2\). Prove that \(n\) is divisible by \(2\).

Let \(n\) be an integer. Prove that if \(n^3\) is divisible by \(3\), then \(n\) is divisible by \(3\).

The numbers \(x\) and \(y\) satisfy \(x+3 = y+5\). Prove that \(x>y\).

The numbers \(x\) and \(y\) satisfy \(x+7 \geq y+8\). Prove that \(x>y\).

Can three points with integer coordinates be the vertices of an equilateral triangle?
image

Prove that there are infinitely many natural numbers \(\{1,2,3,4,...\}\).