Problems

Age
Difficulty
Found: 1740

Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.

Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).

In the Republic of mathematicians, the number \(\alpha > 2\) was chosen and coins were issued with denominations of 1 pound, as well as in \(\alpha^k\) pounds for every natural \(k\). In this case \(\alpha\) was chosen so that the value of all the coins, except for the smallest, was irrational. Could it be that any amount of a natural number of pounds can be made with these coins, using coins of each denomination no more than 6 times?

A function \(f\) is given, defined on the set of real numbers and taking real values. It is known that for any \(x\) and \(y\) such that \(x > y\), the inequality \((f (x)) ^2 \leq f (y)\) is true. Prove that the set of values generated by the function is contained in the interval \([0,1]\).

Author: I.I. Bogdanov

Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 3, and any two neighbouring terms differ by no more than 1. How many sequences will he have to write out?

a) There are three identical large vessels. In one there are 3 litres of syrup, in the other – 20 litres of water, and the third is empty. You can pour all the liquid from one vessel into another or into a sink. You can choose two vessels and pour into one of them liquid from the third, until the liquid levels in the selected vessels are equal. How can you get 10 litres of diluted 30% syrup?

b) The same, but there is \(N\) l of water. At what integer values of \(N\) can you get 10 liters of diluted 30% syrup?