Inequality of Jensen. Prove that if the function \(f (x)\) is convex upward on \([a, b]\), then for any distinct points \(x_1, x_2, \dots , x_n\) (\(n \geq 2\)) from \([a; b]\) and any positive \(\alpha_{1}, \alpha_{2}, \dots , \alpha_{n}\) such that \(\alpha_ {1} + \alpha_{2} + \dots + \alpha_{n} = 1\), the following inequality holds: \(f (\alpha_{1} x_1 + \dots + \alpha_{n} x_n) > \alpha_{1} f (x_1) + \dots + \alpha_{n} f (x_n)\).
Let \(p\) and \(q\) be positive numbers where \(1 / p + 1 / q = 1\). Prove that \[a_1b_1 + a_2b_2 + \dots + a_nb_n \leq (a_1^p + \dots a_n^p)^{1/p}(b_1^q +\dots + b_n^q)^{1/q}\] The values of the variables are considered positive.
Draw all of the stairs made from four bricks in descending order, starting with the steepest \((4, 0, 0, 0)\) and ending with the shallowest \((1, 1, 1, 1)\).
Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.
A frog jumps over the vertices of the triangle \(ABC\), moving each time to one of the neighbouring vertices.
How many ways can it get from \(A\) to \(A\) in \(n\) jumps?
Prove that the polynomial \(P (x)\) is divisible by its derivative if and only if \(P (x)\) has the form \(P(x) = a_n(x - x_0)^n\).
Prove that the polynomial \(P (x) = a_0 + a_1x + \dots + a_nx^n\) has a number \(-1\) which is a root of multiplicity \(m + 1\) if and only if the following conditions are satisfied: \[\begin{aligned} a_0 - a_1 + a_2 - a_3 + \dots + (-1)^{n}a_n &= 0,\\ - a_1 + 2a_2 - 3a_3 + \dots + (-1)^{n}na_n &= 0,\\ \dots \\ - a_1 + 2^{m}a_2 - 3^{m}a_3 + \dots + (-1)^{n}n^{m}a_n &= 0. \end{aligned}\]
Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).
A polynomial of degree \(n > 1\) has \(n\) distinct roots \(x_1, x_2, \dots , x_n\). Its derivative has the roots \(y_1, y_2, \dots , y_{n-1}\). Prove the inequality \[\frac{x_1^2 + \dots + x_n^2}{n}> \frac{y_1^2 + \dots + y_n^2}{n}.\]
In the Republic of mathematicians, the number \(\alpha > 2\) was chosen and coins were issued with denominations of 1 pound, as well as in \(\alpha^k\) pounds for every natural \(k\). In this case \(\alpha\) was chosen so that the value of all the coins, except for the smallest, was irrational. Could it be that any amount of a natural number of pounds can be made with these coins, using coins of each denomination no more than 6 times?