Problems

Age
Difficulty
Found: 1740

Two players play on a square field of size \(99 \times 99\), which has been split onto cells of size \(1 \times 1\). The first player places a cross on the center of the field; After this, the second player can place a zero on any of the eight cells surrounding the cross of the first player. After that, the first puts a cross onto any cell of the field next to one of those already occupied, etc. The first player wins if he can put a cross on any corner cell. Prove that with any strategy of the second player the first can always win.

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum?

Airlines connect pairs of cities. How can you connect 50 cities with the fewest number of airlines so that from every city you can get to any other city by taking at most two flights?

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum? You are given a number \(x\) that is greater than 1. Is the following inequality necessarily fulfilled \(\lfloor \sqrt{\!\sqrt{x}}\rfloor = \lfloor \sqrt{\!\sqrt{x}}\rfloor\)?

The tracks in a zoo form an equilateral triangle, in which the middle lines are drawn. A monkey ran away from its cage. Two guards try to catch the monkey. Will they be able to catch the monkey if all three of them can run only along the tracks, and the speed of the monkey and the speed of the guards are equal and they can always see each other?

The judges of an Olympiad decided to denote each participant with a natural number in such a way that it would be possible to unambiguously reconstruct the number of points received by each participant in each task, and that from each two participants the one with the greater number would be the participant which received a higher score. Help the judges solve this problem!

In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?

The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).

a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).