Problems

Age
Difficulty
Found: 1816

One hundred cubs found berries in the forest: the youngest managed to grab 1 berry, the next youngest cub – 2 berries, the next – 4 berries, and so on, until the oldest who got \(2^{99}\) berries. The fox suggested that they share the berries “fairly.” She can approach two cubs and distribute their berries evenly between them, and if this leaves an extra berry, then the fox eats it. With such actions, she continues, until all the cubs have an equal number of berries. What is the largest number of berries that the fox can eat?

Hannah Montana wants to leave the round room which has six doors, five of which are locked. In one attempt she can check any three doors, and if one of them is not locked, then she will go through it. After each attempt her friend Michelle locks the door, which was opened, and unlocks one of the neighbouring doors. Hannah does not know which one exactly. How should she act in order to leave the room?

There are 30 students in a class: excellent students, mediocre students and slackers. Excellent students answer all questions correctly, slackers are always wrong, and the mediocre students answer questions alternating one by one correctly and incorrectly. All the students were asked three questions: “Are you an excellent pupil?”, “Are you a mediocre student?”, “Are you a slacker?”. 19 students answered “Yes” to the first question, to the second 12 students answered yes, to the third 9 students answered yes. How many mediocre students study in this class?

100 switched on and 100 switched off lights are randomly arranged in two boxes. Each flashlight has a button, the button of which turns off an illuminated flashlight and switches on a turned off flashlight. Your eyes are closed and you can not see if the flashlight is on. But you can move the flashlights from a box to another box and press the buttons on them. Think of a way to ensure that the burning flashlights in the boxes are equally split.

Replace the letters with numbers (all digits must be different) so that the correct equality is obtained: \(A/ B/ C + D/ E/ F + G/ H/ I = 1\).

A pharmacist has three weights, with which he measured out and gave 100 g of iodine to one buyer, 101 g of honey to another, and 102 g of hydrogen peroxide to the third. He always placed the weights on one side of the scales, and the goods on the other. Could it be that each weight used is lighter than 90 grams?

George drew an empty table of size \(50 \times 50\) and wrote on top of each column and to the left of each row, a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down the sum of the numbers written at the start of the corresponding row and column (“addition table”). What is the largest number of sums in this table that could be rational numbers?

Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?

There is an elastic band and glass beads: four identical red ones, two identical blue ones and two identical green ones. It is necessary to string all eight beads on the elastic band in order to get a bracelet. How many different bracelets can be made so that beads of the same colour are not next to each other? (Assume that there is no buckle, and the knot on the elastic is invisible).