Is there a line on the coordinate plane relative to which the graph of the function \(y = 2^x\) is symmetric?
In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?
The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).
a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).
Aladdin visited all of the points on the equator, moving to the east, then to the west, and sometimes instantly moving to the diametrically opposite point on Earth. Prove that there was a period of time during which the difference in distances traversed by Aladdin to the east and to the west was not less than half the length of the equator.
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \sin x + a & = bx \\ \cos x &= b \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
The numbers \(a\) and \(b\) are such that the first equation of the system \[\begin{aligned} \cos x &= ax + b \\ \sin x + a &= 0 \end{aligned}\] has exactly two solutions. Prove that the system has at least one solution.
Determine all natural numbers \(m\) and \(n\) such as \(m! + 12 = n^2\).
In the dense dark forest ten sources of dead water are erupting from the ground: named from #1 to #10. Of the first nine sources, dead water can be taken by everyone, but the source #10 is in the cave of the dark wizard, from which no one, except for the dark wizard himself, can collect water. The taste and color of dead water is no different from ordinary water, however, if a person drinks from one of the sources, then he will die. Only one thing can save him: if he then drinks poison from a source whose number is greater. For example, if he drinks from the seventh source, then he must necessarily drink poison from the #8, #9 or #10 sources. If he doesn’t drink poison from the seventh source, but does from the ninth, only the poison from the source #10 will save him. And if he originally drinks the tenth poison, then nothing will help him now. Robin Hood summoned the dark wizard to a duel. The terms of the duel were as follows: each brings with him a mug of liquid and gives it to his opponent. The dark wizard was delighted: “Hurray, I will give him poison #10, and Robin Hood can not be saved! And I’ll drink the poison, which Robin Hood brings to me, then ill drink the #10 poison and that will save me!” On the appointed day, both opponents met at the agreed place. They honestly exchanged mugs and drank what was in them. However, afterwards erupted the joy and surprise of the inhabitants of the dark forest, when it turned out that the dark wizard had died, and Robin Hood remained alive! Only the Wise Owl was able to guess how Robin Hood had managed to defeat dark wizard. Try and guess as well.
Prove that the following facts are true for any graph:
a) The sum of degrees of all vertices is equal to twice the number of edges (and therefore it is even);
b) The number of vertices of odd degree is even.
During a chess tournament, some of the players played an odd number of games. Prove that the number of such players is even.