Ten pairwise distinct non-zero numbers are such that for each two of them either the sum of these numbers or their product is a rational number.
Prove that the squares of all numbers are rational.
The polynomial \(P (x)\) of degree \(n\) has \(n\) distinct real roots.
What is the largest number of its coefficients that can be equal to zero?
We call a number \(x\) rational if it can be represented as \(x=\frac{p}{q}\) for coprime integers \(p\) and \(q\). Otherwise we call the number irrational.
Non-zero numbers \(a\) and \(b\) satisfy the equality \(a^2b^2 (a^2b^2 + 4) = 2(a^6 + b^6)\). Prove that at least one of them is irrational.
The functions \(f (x) - x\) and \(f (x^2) - x^6\) are defined for all positive \(x\) and increase. Prove that the function
also increases for all positive \(x\).
The sum of the positive numbers \(a, b, c\) is \(\pi / 2\). Prove that \(\cos a + \cos b + \cos c > \sin a + \sin b + \sin c\).
The circles \(\sigma_1\) and \(\sigma_2\) intersect at points \(A\) and \(B\). At the point \(A\) to \(\sigma_1\) and \(\sigma_2\), respectively, the tangents \(l_1\) and \(l_2\) are drawn. The points \(T_1\) and \(T_2\) are chosen respectively on the circles \(\sigma_1\) and \(\sigma_2\) so that the angular measures of the arcs \(T_1A\) and \(AT_2\) are equal (the arc value of the circle is considered in the clockwise direction). The tangent \(t_1\) at the point \(T_1\) to the circle \(\sigma_1\) intersects \(l_2\) at the point \(M_1\). Similarly, the tangent \(t_2\) at the point \(T_2\) to the circle \(\sigma_2\) intersects \(l_1\) at the point \(M_2\). Prove that the midpoints of the segments \(M_1M_2\) are on the same line, independent of the positions of the points \(T_1, T_2\).
Prove that for each \(x\) such that \(\sin x \neq 0\), there is a positive integer \(n\) such that \(|\sin nx| \geq \sqrt{3}/2\).
For what natural numbers \(n\) are there positive rational but not whole numbers \(a\) and \(b\), such that both \(a + b\) and \(a^n + b^n\) are integers?
The base of the pyramid is a square. The height of the pyramid crosses the diagonal of the base. Find the largest volume of such a pyramid if the perimeter of the diagonal section containing the height of the pyramid is 5.
The volume of the regular quadrangular pyramid \(SABCD\) is equal to \(V\). The height \(SP\) of the pyramid is the edge of the regular tetrahedron \(SPQR\), the plane of the face \(PQR\) which is perpendicular to the edge \(SC\). Find the volume of the common part of these pyramids.