Problems

Age
Difficulty
Found: 1740

Two segments \(AB\) and \(A'B'\) are given on a plane. Construct the point \(O\) so that the triangles \(AOB\) and \(A'OB'\) are similar (the same letters denote the corresponding vertices of similar triangles).

Prove that \(\angle ABC > 90^{\circ}\) if and only if the point \(B\) lies inside a circle with diameter \(AC\).

The radii of two circles are \(R\) and \(r\), and the distance between their centres is equal \(d\). Prove that these circles intersect if and only if \(|R - r| < d < R + r\).

A triangle of area 1 with sides \(a \leq b \leq c\) is given. Prove that \(b \geq \sqrt{2}\).

In the quadrilateral \(ABCD\), the angles \(A\) and \(B\) are equal, and \(\angle D > \angle C\). Prove that \(AD < BC\).

In the trapezoid \(ABCD\), the angles at the base \(AD\) satisfy the inequalities \(\angle A < \angle D < 90^{\circ}\). Prove that \(AC > BD\).

Prove that if two opposite angles of a quadrilateral are obtuse, then the diagonal connecting the vertices of these angles is shorter than the other diagonal.