The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).
Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).
The board has the form of a cross, which is obtained if corner boxes of a square board of \(4 \times 4\) are erased. Is it possible to go around it with the help of the knight chess piece and return to the original cell, having visited all the cells exactly once?
Prove that, if \(b=a-1\), then \[(a+b)(a^2 +b^2)(a^4 +b^4)\dotsb(a^{32} +b^{32})=a^{64} -b^{64}.\]
Construct a triangle with the side \(c\), median to side \(a\), \(m_a\), and median to side \(b\), \(m_b\).
Construct a triangle with the side \(a\), the side \(b\) and height to side \(a\), \(h_a\).
Inside an angle two points, \(A\) and \(B\), are given. Construct a circle which passes through these points and cuts the sides of the angle into equal segments.
Two segments \(AB\) and \(A'B'\) are given on a plane. Construct the point \(O\) so that the triangles \(AOB\) and \(A'OB'\) are similar (the same letters denote the corresponding vertices of similar triangles).
Using a right angle, draw a straight line through the point \(A\) parallel to the given line \(l\).
Prove that \(S_{ABC} \leq AB \times BC/2\).