Prove that the points symmetric to an arbitrary point relative to the midpoints of the sides of a square are vertices of some square.
The points \(A\) and \(B\) and the line \(l\) are given on a plane. On which trajectory does the intersection point of the medians of the triangles \(ABC\) move, if the point \(C\) moves along the line \(l\)?
There are 5 points inside an equilateral triangle with side of length 1. Prove that the distance between some two of them is less than 0.5.
A \(3\times 4\) rectangle contains 6 points. Prove that amongst them there will be two points, such that the distance between them is no greater than \(\sqrt5\).
A unit square contains 51 points. Prove that it is always possible to cover three of them with a circle of radius \(\frac{1}{7}\).
What is the minimum number of points necessary to mark inside a convex \(n\)-sided polygon, so that at least one marked point always lies inside any triangle whose vertices are shared with those of the polygon?
A plane contains \(n\) straight lines, of which no two are parallel. Prove that some of the angles will be smaller than \(180^\circ/n\).
Several chords are drawn through a unit circle. Prove that if each diameter intersects with no more than \(k\) chords, then the total length of all the chords is less than \(\pi k\).
Several circles, whose total length of circumferences is 10, are placed inside a square of side 1. Prove that there will always be some straight line that crosses at least four of the circles.
A square of side 15 contains 20 non-overlapping unit squares. Prove that it is possible to place a circle of radius 1 inside the large square, so that it does not overlap with any of the unit squares.