The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).
Is it true that this sequence is limited?
The numbers \(a_1, a_2, \dots , a_k\) are such that the equality \(\lim\limits_{n\to\infty} (x_n + a_1x_{n - 1} + \dots + a_kx_{n - k}) = 0\) is possible only for those sequences \(\{x_n\}\) for which \(\lim\limits_{n\to\infty} x_n = 0\). Prove that all the roots of the polynomial P \((\lambda) = \lambda^k + a_1 \lambda^{k-1} + a_2 \lambda^{k -2} + \dots + a_k\) are modulo less than 1.
Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.
Prove that the tangent to the graph of the function \(f (x)\), constructed at coordinates \((x_0, f (x_0))\) intersects the \(Ox\) axis at the coordinate: \(x_0 -\frac{f(x_0)}{f'(x_0)}\).
Prove that \(\sqrt{\frac{a^2 + b^2}{2}} \geq \frac{a+b}{2}\).
Prove that the equation \(\frac {x}{y} + \frac {y}{z} + \frac {z}{x} = 1\) is unsolvable using positive integers.
Prove that if the function \(f (x)\) is convex upwards on the line \([a, b]\), then for any distinct points \(x_1, x_2\) in \([a; b]\) and for any positive \(\alpha_{1}, \alpha_{2}\) such that \(\alpha_{1} + \alpha_ {2} = 1\) the following inequality holds: \(f(\alpha_1 x_1 + \alpha_2 x_2 ) > \alpha_1 f (x_1) + \alpha_2 f(x_2)\).
Let the sequences of numbers \(\{a_n\}\) and \(\{b_n\}\), that are associated with the relation \(\Delta b_n = a_n\) (\(n = 1, 2, \dots\)), be given. How are the partial sums \(S_n\) of the sequence \(\{a_n\}\) \(S_n = a_1 + a_2 + \dots + a_n\) linked to the sequence \(\{b_n\}\)?
Definition. Let the function \(f (x, y)\) be valid at all points of a plane with integer coordinates. We call a function \(f (x, y)\) harmonic if its value at each point is equal to the arithmetic mean of the values of the function at four neighbouring points, that is: \[f (x, y) = 1/4 (f (x + 1, y) + f (x-1, y) + f(x, y + 1) + f (x, y-1)).\] Let \(f(x, y)\) and \(g (x, y)\) be harmonic functions. Prove that for any \(a\) and \(b\) the function \(af (x, y) + bg (x, y)\) is also harmonic.
Let \(f (x, y)\) be a harmonic function. Prove that the functions \(\Delta_{x} f (x, y) = f (x + 1, y) - f (x, y)\) and \(\Delta_{y}f(x , y) = f(x, y + 1) - f(x, y)\) will also be harmonic.