\(N\) points are given, no three of which lie on one line. Each two of these points are connected by a segment, and each segment is coloured in one of the \(k\) colours. Prove that if \(N > \lfloor k!e\rfloor\), then among these points one can choose three such that all sides of the triangle formed by them will be colored in one colour.
Prove that if \((m, 10) = 1\), then there is a repeated unit \(E_n\) that is divisible by \(m\). Will there be infinitely many repeated units?
Derive from the theorem in question 61013 that \(\sqrt{17}\) is an irrational number.
For a given polynomial \(P (x)\) we describe a method that allows us to construct a polynomial \(R (x)\) that has the same roots as \(P (x)\), but all multiplicities of 1. Set \(Q (x) = (P(x), P'(x))\) and \(R (x) = P (x) Q^{-1} (x)\). Prove that
a) all the roots of the polynomial \(P (x)\) are the roots of \(R (x)\);
b) the polynomial \(R (x)\) has no multiple roots.
Construct the polynomial \(R (x)\) from the problem 61019 if:
a) \(P (x) = x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4\);
b)\(P (x) = x^5 + x^4 - 2x^3 - 2x^2 + x + 1\).
Prove that for \(n> 0\) the polynomial \(nx^{n + 1} - (n + 1) x^n + 1\) is divisible by \((x - 1)^2\).
Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?
Let \(z = x + iy\), \(w = u + iv\). Find a) \(z + w\); b) \(zw\); c) \(z/w\).
Prove the equalities:
a) \(\overline{z+w} = \overline{z} + \overline{w}\); b) \(\overline{zw} = \overline{z} \overline{w}\); c) \(\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}\); d) \(|\overline{z}| = |z|\); d) \(\overline{\overline{z}} = z\).
Prove the equalities:
a) \(z + \overline {z} = 2 \operatorname{Re} z\);
b) \(z - \overline {z} = 2i \operatorname{Im} z\);
c) \(\overline {z} z = |z|^2\).