Problems

Age
Difficulty
Found: 1176

Let \(f\) be a continuous function defined on the interval \([0; 1]\) such that \(f (0) = f (1) = 0\). Prove that on the segment \([0; 1]\) there are 2 points at a distance of 0.1 at which the function \(f 4(x)\) takes equal values.

A convex figure and point \(A\) inside it are given. Prove that there is a chord (that is, a segment joining two boundary points of a convex figure) passing through point \(A\) and dividing it in half at point \(A\).

Two players play the following game. They take turns. One names two numbers that are at the ends of a line segment. The next then names two other numbers, which are at the ends of a segment nested in the previous one. The game goes on indefinitely. The first aims to have at least one rational number within the intersection of all of these segments, and the second aims to prevent such occurring. Who wins in this game?

Prove that rational numbers from \([0; 1]\) can be covered by a system of intervals of total length no greater than \(1/1000\).

The positive irrational numbers \(a\) and \(b\) are such that \(1/a + 1/b = 1\). Prove that among the numbers \(\lfloor ma\rfloor , \lfloor nb\rfloor\) each natural number occurs exactly once.

A rectangular billiard with sides 1 and \(\sqrt {2}\) is given. From its angle at an angle of \(45 ^\circ\) to the side a ball is released. Will it ever get into one of the pockets? (The pockets are in the corners of the billiard table).

Suppose that \(n \geq 3\). Are there n points that do not lie on one line, whose pairwise distances are irrational, and the areas of all of the triangles with vertices in them are rational?

Do there exist three points \(A\), \(B\) and \(C\) on the plane such that for any point \(X\) the length of at least one of the segments \(XA\), \(XB\) and \(XC\) is irrational?