Prove that for every convex polyhedron there are two faces with the same number of sides.
Two identical gears have 32 teeth. They were combined and 6 pairs of teeth were simultaneously removed. Prove that one gear can be rotated relative to the other so that in the gaps in one gear where teeth were removed the second gear will have whole teeth.
A spherical sun is observed to have a finite number of circular sunspots, each of which covers less than half of the sun’s surface. These sunspots are said to be enclosed, that is no two sunspots can touch, and they do not overlap with one another. Prove that the sun will have two diametrically opposite points that are not covered by sunspots.
There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?
In a regular 1981-gon 64 vertices were marked. Prove that there exists a trapezium with vertices at the marked points.
In a square with side length 1 there is a broken line, which does not self-intersect, whose length is no less than 200. Prove that there is a straight line parallel to one of the sides of the square that intersects the broken line at a point no less than 101 units along the line.
The product of 1986 natural numbers has exactly 1985 different prime factors. Prove that either one of these natural numbers, or the product of several of them, is the square of a natural number.
The product of a group of 48 natural numbers has exactly 10 prime factors. Prove that the product of some four of the numbers in the group will always give a square number.
7 different digits are given. Prove that for any natural number \(n\) there is a pair of these digits, the sum of which ends in the same digit as the number.
Does there exist a flat quadrilateral in which the tangents of all interior angles are equal?