Problems

Age
Difficulty
Found: 1176

We are given a \(100\times 100\) square grid and \(N\) counters. All of the possible arrangements of the counters on the grid which follow the following rule are considered: no two counters lie in adjacent squares.

What is the largest value of \(N\) for which, in every single possible arrangement of counters following this rule, it is possible to find at least one counter such that moving it to an adjacent square does not break the rule. Squares are considered adjacent if they share a side.

On a particular day it turned out that every person living in a particular city made no more than one phone call. Prove that it is possible to divide the population of this city into no more than three groups, so that within each group no person spoke to any other by telephone.

We are given a convex 200-sided polygon in which no three diagonals intersect at the same point. Each of the diagonals is coloured in one of 999 colours. Prove that there is some triangle inside the polygon whose sides lie some of the diagonals, so that all 3 sides are the same colour. The vertices of the triangle do not necessarily have to be the vertices of the polygon.

We are given a table of size \(n \times n\). \(n-1\) of the cells in the table contain the number \(1\). The remainder contain the number \(0\). We are allowed to carry out the following operation on the table:

1. Pick a cell.

2. Subtract 1 from the number in that cell.

3. Add 1 to every other cell in the same row or column as the chosen cell.

Is it possible, using only this operation, to create a table in which all the cells contain the same number?

Prove that in any set of 117 unique three-digit numbers it is possible to pick 4 non-overlapping subsets, so that the sum of the numbers in each subset is the same.

Let’s denote any two digits with the letters \(A\) and \(X\). Prove that the six-digit number \(XAXAXA\) is divisible by 7 without a remainder.

The numbers \(p\) and \(q\) are such that the parabolas \(y = - 2x^2\) and \(y = x^2 + px + q\) intersect at two points, bounding a certain figure.

Find the equation of the vertical line dividing the area of this figure in half.