Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?
The sequence of numbers \(a_1, a_2, \dots\) is given by the conditions \(a_1 = 1\), \(a_2 = 143\) and
for all \(n \geq 2\).
Prove that all members of the sequence are integers.
Solve the inequality: \(\lfloor x\rfloor \times \{x\} < x - 1\).
We are given \(n+1\) different natural numbers, which are less than \(2n\) (\(n>1\)). Prove that among them there will always be three numbers, where the sum of two of them is equal to the third.
Let \(x_1, x_2, \dots , x_n\) be some numbers belonging to the interval \([0, 1]\). Prove that on this segment there is a number \(x\) such that \[\frac{1}{n} (|x - x_1| + |x - x_2| + \dots + |x - x_n|) = 1/2.\]
Let \(p\) be a prime number, and \(a\) an integer number not divisible by \(p\). Prove that there is a positive integer \(b\) such that \(ab \equiv 1 \pmod p\).
Each of the 102 pupils of one school is friends with at least 68 others. Prove that among them there are four who have the same number of friends.
There were seven boxes. In some of them, seven more boxes were placed inside (not nested in each other), etc. As a result, there are 10 non-empty boxes. How many boxes are there now in total?
A scone contains raisins and sultanas. Prove that inside the scone there will always be two points 1cm apart such that either both lie inside raisins, both inside sultanas, or both lie outside of either raisins or sultanas.
A professional tennis player plays at least one match each day for training purposes. However in order to ensure he does not over-exert himself he plays no more than 12 matches a week. Prove that it is possible to find a group of consecutive days during which the player plays a total of 20 matches.