The function \(f (x)\) for each real value of \(x\in (-\infty, + \infty)\) satisfies the equality \(f (x) + (x + 1/2) \times f (1 - x) = 1\).
a) Find \(f (0)\) and \(f (1)\). b) Find all such functions \(f (x)\).
Prove that the following facts are true for any graph:
a) The sum of degrees of all vertices is equal to twice the number of edges (and therefore it is even);
b) The number of vertices of odd degree is even.
48 blacksmiths must shoe 60 horses. Each blacksmith spends 5 minutes on one horseshoe. What is the shortest time they should spend on the work? (Note that a horse can not stand on two legs.)
This problem is from Ancient Rome.
A rich senator died, leaving his wife pregnant. After the senator’s death it was found out that he left a property of 210 talents (an Ancient Roman currency) in his will as follows: “In the case of the birth of a son, give the boy two thirds of my property (i.e. 140 talents) and the other third (i.e. 70 talents) to the mother. In the case of the birth of a daughter, give the girl one third of my property (i.e. 70 talents) and the other two thirds (i.e. 140 talents) to the mother.”
The senator’s widow gave birth to twins: one boy and one girl. This possibility was not foreseen by the late senator. How can the property be divided between three inheritors so that it is as close as possible to the instructions of the will?
Prove that for every natural number \(n > 1\) the equality: \[\lfloor n^{1 / 2}\rfloor + \lfloor n^{1/ 3}\rfloor + \dots + \lfloor n^{1 / n}\rfloor = \lfloor \log_{2}n\rfloor + \lfloor \log_{3}n\rfloor + \dots + \lfloor \log_{n}n\rfloor\] is satisfied.
\(a_1, a_2, a_3, \dots\) is an increasing sequence of natural numbers. It is known that \(a_{a_k} = 3k\) for any \(k\). Find a) \(a_{100}\); b) \(a_{2022}\).
\(f(x)\) is an increasing function defined on the interval \([0, 1]\). It is known that the range of its values belongs to the interval \([0, 1]\). Prove that, for any natural \(N\), the graph of the function can be covered by \(N\) rectangles whose sides are parallel to the coordinate axes so that the area of each is \(1/N^2\). (In a rectangle we include its interior points and the points of its boundary).
a) Give an example of a positive number \(a\) such that \(\{a\} + \{1 / a\} = 1\).
b) Can such an \(a\) be a rational number?
For which natural \(n\) does the number \(\frac{n^2}{1.001^n}\) reach its maximum value?
The function \(F\) is given on the whole real axis, and for each \(x\) the equality holds: \(F (x + 1) F (x) + F (x + 1) + 1 = 0\).
Prove that the function \(F\) can not be continuous.