Two circles \(c\) and \(d\) are tangent at point \(B\). Two straight lines intersecting the first circle at points \(D\) and \(E\) and the second circle at points \(G\) and \(F\) are drawn through the point \(B\). Prove that \(ED\) is parallel to \(FG\).
Several circles, whose total length of circumferences is 10, are placed inside a square of side 1. Prove that there will always be some straight line that crosses at least four of the circles.
We are given 51 two-digit numbers – we will count one-digit numbers as two-digit numbers with a leading 0. Prove that it is possible to choose 6 of these so that no two of them have the same digit in the same column.
Find \(m\) and \(n\) knowing the relation \(\binom{n+1}{m+1}: \binom{n+1}{m}:\binom{n+1}{m-1} = 5:5:3\).
Prove that in a three-digit number, that is divisible by 37, you can always rearrange the numbers so that the new number will also be divisible by 37.
Prove that for any natural number there is a multiple of it, the decimal notation of which consists of only 0 and 1.
For what natural numbers \(a\) and \(b\) is the number \(\log_{a} b\) rational?
\(N\) points are given, no three of which lie on one line. Each two of these points are connected by a segment, and each segment is coloured in one of the \(k\) colours. Prove that if \(N > \lfloor k!e\rfloor\), then among these points one can choose three such that all sides of the triangle formed by them will be colored in one colour.
For a given polynomial \(P (x)\) we describe a method that allows us to construct a polynomial \(R (x)\) that has the same roots as \(P (x)\), but all multiplicities of 1. Set \(Q (x) = (P(x), P'(x))\) and \(R (x) = P (x) Q^{-1} (x)\). Prove that
a) all the roots of the polynomial \(P (x)\) are the roots of \(R (x)\);
b) the polynomial \(R (x)\) has no multiple roots.
Construct the polynomial \(R (x)\) from the problem 61019 if:
a) \(P (x) = x^6 - 6x^4 - 4x^3 + 9x^2 + 12x + 4\);
b)\(P (x) = x^5 + x^4 - 2x^3 - 2x^2 + x + 1\).