Problems

Age
Difficulty
Found: 870

A sequence consists of 19 ones and 49 zeros, arranged in a random order. We call the maximal subsequence of the same symbols a “group”. For example, in the sequence 110001001111 there are five groups: two ones, then three zeros, then one one, then two zeros and finally four ones. Find the mathematical expectation of the length of the first group.

There are \(n\) random vectors of the form \((y_1, y_2, y_3)\), where exactly one random coordinate is equal to 1, and the others are equal to 0. They are summed up. A random vector a with coordinates \((Y_1, Y_2, Y_3)\) is obtained.

a) Find the mathematical expectation of a random variable \(a^2\).

b) Prove that \(|a|\geq \frac{1}{3}\).

On one island, one tribe has a custom – during the ritual dance, the leader throws up three thin straight rods of the same length, connected in the likeness of the letter capital \(\pi\), \(\Pi\). The adjacent rods are connected by a short thread and therefore freely rotate relative to each other. The bars fall on the sand, forming a random figure. If it turns out that there is self-intersection (the first and third bars cross), then the tribe in the coming year are waiting for crop failures and all sorts of trouble. If there is no self-intersection, then the year will be successful – satisfactory and happy. Find the probability that in 2019, the rods will predict luck.

An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?

According to one implausible legend, Cauchy and Bunyakovsky were very fond of playing darts in the evenings. But the target was unusual – the sectors on it were unequal, so the probability of getting into different sectors was not the same. Once Cauchy throws a dart and hits the target. Bunyakovsky throws the next one. Which is more likely: that Bunyakovsky will hit the same sector that Cauchy’s dart went into, or that his dart will land on the next sector clockwise?

Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?

We took several positive numbers and constructed the following sequence: \(a_1\) is the sum of the initial numbers, \(a_2\) is the sum of the squares of the original numbers, \(a_3\) is the sum of the cubes of the original numbers, and so on.

a) Could it happen that up to \(a_5\) the sequence decreases (\(a_1> a_2> a_3> a_4> a_5\)), and starting with \(a_5\) – it increases (\(a_5 < a_6 < a_7 <\dots\))?

b) Could it be the other way around: before \(a_5\) the sequence increases, and starting with \(a_5\) – decreases?

The number \(x\) is such that both the sums \(S = \sin 64x + \sin 65x\) and \(C = \cos 64x + \cos 65x\) are rational numbers.

Prove that in both of these sums, both terms are rational.

Let’s call a natural number good if in its decimal record we have the numbers 1, 9, 7, 3 in succession, and bad if otherwise. (For example, the number 197,639,917 is bad and the number 116,519,732 is good.) Prove that there exists a positive integer \(n\) such that among all \(n\)-digit numbers (from \(10^{n-1}\) to \(10^{n-1}\)) there are more good than bad numbers.

Try to find the smallest possible \(n\).