Problems

Age
Difficulty
Found: 1098

Cut a \(7\times 7\) square into \(9\) rectangles, out of which you can construct any rectangle whose sidelengths are less than \(7\). Show how to construct the rectangles.

Can three points with integer coordinates be the vertices of an equilateral triangle?
image

Let’s compute the infinite sum: \[1+2 + 4 + 8 + 16 + ... + 2^n + ... = c\] Observe that \(1+2+4+8+... = 1 + 2(1+2+4+8+16+...)\), namely \(c = 1+2c\), then it follows that \[c = 1+2+4+8+... = -1.\]

Let’s prove that any \(90^{\circ}\) angle is equal to any angle larger than \(90^{\circ}\). On the diagram
image
We have the angle \(\angle ABC = 90^{\circ}\) and angle \(\angle BCD> 90^{\circ}\). We can choose a point \(D\) in such a way that the segments \(AB\) and \(CD\) are equal. Now find middles \(E\) and \(G\) of the segments \(BC\) and \(AD\) respectively and draw lines \(EF\) and \(FG\) perpendicular to \(BC\) and \(AD\).
Since \(EF\) is the middle perpendicular to \(BC\) the triangles \(BEF\) and \(CEF\) are equal which implies the equality of segments \(BF\) and \(CF\) and of angles \(\angle EBF = \angle ECF\), the same about the segments \(AF=FD\). By condition we have \(AB=CD\), thus the triangles \(ABF\) and \(CDF\) are equal, thus \(\angle ABF = \angle DCF\). But then we have \[\angle ABE = \angle ABF + \angle FBE = \angle DCF + \angle FCE = \angle DCE.\]

Jess and Tess are playing a game colouring points on a blank plane. Jess is moving first, she picks a non-colored point on a plane and colours it red. Then Tess makes a move, she picks \(2022\) colourless points on the plane and colours them all green. Jess then moves again, and they take turns. Jess wins if she manages to create a red equilateral triangle on the plane, Tess is trying to prevent that from happening. Will Jess always eventually win?

Two opposite corners were removed from an \(8 \times 8\) chessboard. Is it possible to cover this chessboard with \(1 \times 2\) rectangular blocks?

One unit square of a \(10 \times 10\) square board was removed. Is it possible to cover the rest of it with \(3\)-square \(L\)-shaped blocks?

A \(7 \times 7\) square was tiled using \(1 \times 3\) rectangular blocks in such a way that one of the squares has not been covered. Find all the squares that could be left without being covered.