Problems

Age
Difficulty
Found: 2505

Show that there are infinitely many integers \(n\) such that \(2^n+1\) is divisible by \(n\). Find all prime numbers that satisfy this property.

If \(k>1\), show that \(k\) does not divide \(2^{k-1}+1\). Find all prime numbers \(p,q\) such that \(2^p+2^q\) is divisible by \(pq\).

Find all pairs \((x,n)\) of positive integers such that \(x^n + 2^n + 1\) is a divisor of \(x^{n+1} + 2^{n+1} + 1\).

Let \(n>1\) be an integer. Show that \(n\) does not divide \(2^n-1\).

Find all integers \(n\) such that \(1^n + 2^n + ... + (n-1)^n\) is divisible by \(n\).

How many integers are there \(n>1\) such that \(a^{25}-a\) is divisible by \(n\) for every integer \(a\).

Let \(p\) be a prime number, \(a\) be an integer, not divisible by \(p\). Prove that \(a^p-a\) is divisible by \(p\).

Let \(n\) be an integer. Denote by \(\phi(n)\) the number of integers from \(1\) to \(n-1\) coprime to \(n\). Find \(\phi(n)\) in the following cases:

  • \(n\) is a prime number.

  • \(n = p^k\) for a prime \(p\).

  • \(n=pq\) for two different primes \(p\) and \(q\).

Let \(n\) be an integer and let \(a\) be an integer coprime to \(n\). Prove that \(a^{\phi(n)-1}-1\) is divisible by \(n\).

Let \(\phi(n)\) be Euler’s function. Namely \(\phi(n)\) counts how many integers from \(1\) to \(n\) inclusive are coprime with \(n\). For two natural numbers \(m\), \(n\) such that \(\gcd(m,n)=1\), prove that \(\phi(mn) = \phi(m)\phi(n)\).