Problems

Age
Difficulty
Found: 2505

Let \(a\) and \(b\) be two different \(9\)-digit numbers. It is known that each one of them contains all of the digits \(1,2,...9\). Find the maximal value of \(\gcd(a,b)\).

Take a regular dodecahedron as in the image. It has \(12\) regular pentagons as its faces, \(30\) edges, and \(20\) vertices. We can cut it with planes in various ways and the cut will be a polygon on a plane. Find out how many ways there are to cut a dodecahedron with a plane so that the polygon obtained is a regular hexagon.

image

For an odd number \(N\) denote by \(A\) the minimal positive difference between prime divisors of \(N\), denote by \(B\) the minimal positive difference between composite divisors of \(N\). Usually we have \(A<B\), but can we have \(A>B\)? (Disregard numbers such as \(15\) where one of \(A\) or \(B\) is not defined)

A natural number \(N\) is called perfect if it equals the sum of its divisors, except for \(N\) itself. Prove that if \(2^r-1\) is prime, then \((2^r-1)2^{r-1}\) is a perfect number. Are there any odd perfect numbers?

Let \(a,b,c >0\) be positive real numbers with \(abc \leq 1\). Prove that \[\frac{a}{c} + \frac{b}{a} + \frac{c}{b} \geq a+b+c.\]

Let \(a,b,c >0\) be positive real numbers. Prove that \[(1+a)(1+b)(1+c)\geq 8\sqrt{abc}.\]

For a natural number \(n\) prove that \(n! \leq (\frac{n+1}{2})^n\), where \(n!\) is the factorial \(1\times 2\times 3\times ... \times n\).

Prove the \(AM-GM\) inequality for \(n=2\). Namely for two non-negative real numbers \(a\) and \(b\) we have \(2\sqrt{ab} \leq a+b\).

Prove the Cauchy-Schwartz inequality: for a natural number \(n\) and real numbers \(a_1\), \(a_2\), ..., \(a_n\) and \(b_1\), \(b_2\), ..., \(b_n\) we have \[(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2).\]

Prove the \(GM-HM\) inequality for positive real numbers \(a_1\), \(a_2\), ..., \(a_n\): \[\sqrt[n]{a_1a_2...a_n} \geq \frac{n}{\frac{1}{a_1} + ... \frac{1}{a_n}}.\]