Problems

Age
Difficulty
Found: 1576

There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?

27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?

It is known that \[35! = 10333147966386144929 * 66651337523200000000.\] Find the number replaced by an asterisk.

Construct a function defined at all points on a real line which is continuous at exactly one point.

On a \(100 \times 100\) board 100 rooks are placed that cannot capturing one another.

Prove that an equal number of rooks is placed in the upper right and lower left cells of \(50 \times 50\) squares.

On a board of size \(8 \times 8\), two in turn colour the cells so that there are no corners of three coloured squares. The player who can’t make a move loses. Who wins with the right strategy?

On a plane there are 100 sheep-points and one wolf-point. In one move, the wolf moves by no more than 1, after which one of the sheep moves by a distance of no more than 1, after that the wolf again moves, etc. At any initial location of the points, will a wolf be able to catch one of the sheep?

The planet has \(n\) residents, some are liars and some are truth tellers. Each resident said: “Among the remaining residents of the island, more than half are liars.” How many liars are on the island?