Problems

Age
Difficulty
Found: 1576

In January of a certain year there were four Fridays and four Mondays. Which day of the week was the 20th of January in that year?

A rectangle of size \(199\times991\) is drawn on squared paper. How many squares intersect the diagonal of the rectangle?

The intelligence agency of the Galactic Empire intercepted the following coded message from the enemy planet Medusa: \(ABCDE+BADC=ACDED\).

It is known that different numbers are represented by different letters, and that the same numbers are represented by the same letters. Two robots attempted to decode this message and each one got a different answer. Is this possible, or should one of the robots be melted down as scrap metal?

Suppose you have 127 1p coins. How can you distribute them among 7 coin pouches such that you can give out any amount from 1p to 127p without opening the coin pouches?

The board has the form of a cross, which is obtained if corner boxes of a square board of \(4 \times 4\) are erased. Is it possible to go around it with the help of the knight chess piece and return to the original cell, having visited all the cells exactly once?

Prove that: \[a_1 a_2 a_3 \cdots a_{n-1}a_n \times 10^3 \equiv a_{n-1} a_n \times 10^3 \pmod4,\] where \(n\) is a natural number and \(a_i\) for \(i=1,2,\ldots, n\) are the digits of some number.

You are given 10 different positive numbers. In which order should they be named \(a_1, a_2, \dots , a_{10}\) such that the sum \(a_1 +2a_2 +3a_3 +\dots +10a_{10}\) is at its maximum?

Carpenters were sawing some logs. They made 10 cuts and this produced 16 pieces of wood. How many logs did they saw?

Snow White cut out a big square of cotton fabric and placed it in a chest. The first gnome came, took out the square of fabric from the chest, cut it into four squares, put these back in the chest and left. Later the second gnome came and took out one of the squares and then cut it into four pieces and placed all of these in the chest. Then came the third gnome. He also took out one of the squares and cut it into four squares and put them all back in the chest. The rest of the gnomes also did the same thing. How many squares of fabric were in the chest after the seventh gnome left?

Jane wrote a number on the whiteboard. Then, she looked at it and she noticed it lacks her favourite digit: 5. So she wrote 5 at the end of it. She then realized the new number is larger than the original one by exactly 1661. What is the number written on the board?