Problems

Age
Difficulty
Found: 1576

Prove that the point \(X\) lies on the line \(AB\) if and only if \(\overrightarrow{OX} = t \overrightarrow{OA} + (1 - t) \overrightarrow{OB}\) for some \(t\) and any point \(O\).

Several points are given and for some pairs \((A, B)\) of these points the vectors \(\overrightarrow{AB}\) are taken, and at each point the same number of vectors begin and end. Prove that the sum of all the chosen vectors is \(\vec{0}\).

Prove that the medians of the triangle \(ABC\) intersect at one point and that point divides the medians in a ratio of \(2: 1\), counting from the vertex.

Inside the rectangle \(ABCD\), the point \(E\) is taken. Prove that there exists a convex quadrilateral with perpendicular diagonals of lengths \(AB\) and \(BC\) whose sides are equal to \(AE\), \(BE\), \(CE\), \(DE\).

The opposite sides of a convex hexagon are pairwise equal and parallel. Prove that it has a centre of symmetry.

A quadrilateral has an axis of symmetry. Prove that this quadrilateral is either an isosceles trapezoid or is symmetric with respect to its diagonal.