On a plane \(n\) randomly placed lines are given. What is the number of triangles formed by them?
How many six-digit numbers exist, for which each succeeding number is smaller than the previous one?
Why are the equalities \(11^2 = 121\) and \(11^3 = 1331\) similar to the lines of Pascal’s triangle? What is \(11^4\) equal to?
How many four-digit numbers can be made using the numbers 1, 2, 3, 4 and 5, if:
a) no digit is repeated more than once;
b) the repetition of digits is allowed;
c) the numbers should be odd and there should not be any repetition of digits?
In a box, there are 10 white and 15 black balls. Four balls are removed from the box. What is the probability that all of the removed balls will be white?
There are three boxes, in each of which there are balls numbered from 0 to 9. One ball is taken from each box. What is the probability that
a) three ones were taken out;
b) three equal numbers were taken out?
Write in terms of prime factors the numbers 111, 1111, 11111, 111111, 1111111.
Let \(m\) and \(n\) be integers. Prove that \(mn(m + n)\) is an even number.
Write the following rational numbers in the form of decimal fractions: a) \(\frac {1}{7}\); b) \(\frac {2}{7}\); c) \(\frac{1}{14}\); d) \(\frac {1}{17}\).
There are 4 weights and scales. How many loads that are different by weight can be accurately weighed using these weights, if
a) weights can be placed only on one side of the scales;
b) weights can be placed on both sides of the scales?