Problems

Age
Difficulty
Found: 1576

In the isosceles triangle \(ABC\), the angle \(B\) is equal to \(30^{\circ}\), and \(AB = BC = 6\). The height \(CD\) of the triangle \(ABC\) and the height \(DE\) of the triangle \(BDC\) are drawn. Find the length \(BE\).

The numerical function \(f\) is such that for any \(x\) and \(y\) the equality \(f (x + y) = f (x) + f (y) + 80xy\) holds. Find \(f(1)\) if \(f(0.25) = 2\).

Valentina added a number (not equal to 0) taken to the power of four and the same number to the power two and reported the result to Peter. Can Peter determine the unique number that Valentina chose?

Anna is waiting for the bus. Which event is most likely?

\(A =\{\)Anna waits for the bus for at least a minute\(\}\),

\(B = \{\)Anna waits for the bus for at least two minutes\(\}\),

\(C = \{\)Anna waits for the bus for at least five minutes\(\}\).

In the cabinet of Anchuria there are 100 ministers. Among them there are honest and dishonest ministers. It is known that out of any ten ministers, at least one minister is dishonest. What is the smallest number of dishonest ministers there could be in the cabinet?

A square is divided into triangles (see the figure). How many ways are there to paint exactly one third of the square? Small triangles cannot be painted partially.

The pupils of class 5A had a total of 2015 pencils. One of them lost a box with five pencils, and instead bought a box with 50 pencils. How many pencils do the pupils of class 5A now have?

To test a new program, a computer selects a random real number \(A\) from the interval \([1, 2]\) and makes the program solve the equation \(3x + A = 0\). Find the probability that the root of this equation is less than \(0.4\).

It is known that \(a = x+y + \sqrt{xy}\), \(b = y + z + \sqrt{yz}\), \(c = x + z + \sqrt{xz}\). where \(x > 0\), \(y > 0\), \(z > 0\). Prove that \(a + b + \sqrt{ab} > c\).