Solve the inequality: \(|x + 2000| <|x - 2001|\).
Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?
Let \(M\) be the point of intersection of the medians of the triangle \(ABC\), and \(O\) an arbitrary point on a plane. Prove that \[OM^2 = 1/3 (OA^2 + OB^2 + OC^2) - 1/9 (AB^2 + BC^2 + AC^2).\]
Three non-coplanar vectors are given. Is it possible to find a fourth vector perpendicular to the three vectors given?
Find the volume of an inclined triangular prism whose base is an equilateral triangle with sides equal to a if the side edge of the prism is equal to the side of the base and is inclined to the plane of the base at an angle of \(60^{\circ}\).
The grandad is twice as strong as the grandma, the grandma is three times stronger than the granddaughter, the granddaughter is four times stronger than the dog, the dog is five times stronger than the cat and the cat is six times stronger than the mouse. The grandad, the grandma, the granddaughter, the dog and the cat together with the mouse can pull out the pumpkin from the ground, which they cannot do without the mouse. How many mice should be summoned so that they can pull out the pumpkin themselves?
If you have a piece of paper and some scissors, is it possible to cut a hole out of the paper that’s big enough for you to crawl through?
There are two hourglasses – one for 7 minutes and another for 11 minutes. An egg is boiled for 15 minutes. How can this time be measured with the help of the available hourglasses?
How can you divide a pancake with three straight sections into 4, 5, 6, 7 parts?
Is it possible to bake a cake that can be divided by one straight cut into 4 pieces?