Problems

Age
Difficulty
Found: 1464

At the elections to the High Government every voter who comes, votes for himself (if he is a candidate) and for those candidates who are his friends. The forecast of the media service of the mayor’s office is considered good if it correctly predicts the number of votes at least for one of the candidates, and not considered good otherwise. Prove that for any forecast voters can show up at the elections in such a way that this forecast will not be considered good.

Consider an \(n\)-dimensional simplex \(\mathcal{A} = A_1A_2...A_{n+1}\), namely a body spanned over vertices \((0,0,...,0), (1,0,0,...,0), (0,1,0,0...,0), ... (0,0,...0,1)\). \[\mathcal{A} = \{\sum_{i=0}^{n}a_i(0,0,...,1,...,0), \,\,\, a_i \geq 0, \,\,\,\, \sum_{i=1}^{n+1}a_i = 1\}.\] Where next to \(a_i\) there is a point with coordinate where \(1\) is in \(i\)-th place. The point \((0,0,...,0)\) belongs to the simplex as well.

A simplicial subdivision of an \(n\)-dimensional simplex \(\mathcal{A}\) is a partition of \(\mathcal{A}\) into small simplices (cells) of the same dimension, such that any two cells are either disjoint, or they share a full face of a certain dimension.
Define a Sperner’s coloring of a simplicial subdivision as an assignment of \(n+1\) colors to the vertices of the subdivision, so that the vertices of \(\mathcal{A}\) receive all different colors, and points on each face of \(\mathcal{A}\) use only the colors of the vertices defining the respective face of \(\mathcal{A}\).
Consider a simplicial subdivision given by pairwise connected middles of all the segments in the original simplex. Assign the numbers \(0,1,2...,n\) to the subdivision vertices in such a way as to conduct a Sperner’s coloring in such a way that you will have only one rainbow simplex.

(USO 1974) Let \(a,b,c\) be three distinct integers, and let \(P(x)\) be a polynomial whose coefficients are all integers. Prove that it is not possible that the following three conditions hold at the same time: \(P(a)=b, P(b)=c,\) and \(P(c)=a\).

For a polynomial \(P(x)=ax^2+bx+c\), consider the following two kinds of transformations:

  1. Swap coefficients \(a\) and \(c\). Hence the polynomial \(P(x)\) becomes \(cx^2+bx+a\) after this transformation.

  2. For any number \(t\) of your choice, change the variable \(x\) into \(x+t\). For example, with the choice of \(t=1\), after this transformation, the polynomial \(x^2+x+1\) becomes \((x+1)^2+(x+1)+1=x^2+3x+3\).

Is it possible, using only a sequence of these two transformations, to change the polynomial \(x^2-x-2\) into the polynomial \(x^2-x-1\)?